题目内容
【题目】已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.
(1)求证:AC⊥BH;
(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)连接AD,由圆周角定理即可得出∠DAC=∠DEC,∠ADC=90°,再根据直角三角形的性质即可得出结论;
(2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC的长,进而求出BC的长,由已知的一对角线段和公共角,根据两对对应角相等的两三角形相似可得三角形BCE与三角形EDC相似,由相似得比例即可求出CE的长.
试题解析:(1)连接AD,
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴∠DCA+∠DAC=90°,
∴∠EBC+∠DCA=90°,
∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,
∴AC⊥BH;
(2)∵∠BDA=180°-∠ADC=90°,∠ABC=45°,
∴∠BAD=45°,
∴BD=AD,
∵BD=8,∴AD=8,
在直角三角形ADC中,AD=8,AC=10,
根据勾股定理得:DC=6,则BC=BD+DC=14,
∵∠EBC=∠DEC,∠BCE=∠ECD,
∴△BCE∽△ECD,
∴,即CE2=BCCD=14×6=84,
∴CE==.
练习册系列答案
相关题目