题目内容
【题目】已知京润生物制品厂生产某种产品的年产量不超过800吨,生产该产品每吨所需相关费为10万元,且生产出的产品都能在当年销售完.产品每吨售价y(万元)与年产量x(吨)之间的函数关系如图所示
(1)当该产品年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣相关费用)
(2)当该产品年产量为多少吨时,该厂能获得当年销售的是大毛利润?最大毛利润多少万元.
【答案】(1)当该产品年产量为500吨时,当年可获得7500万元毛利润;(2)当该产品年产量为800吨时,该厂能获得当年销售的最大毛利润,最大毛利润是9600万元.
【解析】
(1)根据题意可以求得产品每吨售价y(万元)与年产量x(吨)之间的函数关系式,从而可以列出相应的方程,本题得以解决;
(2)根据题意和(1)中的函数关系式,可以求得当该产品年产量为多少吨时,该厂能获得当年销售的最大毛利润,最大毛利润多少万元.
(1)设产品每吨售价y(万元)与年产量x(吨)之间的函数关系是y=ax+b,
则,得,
∴y=﹣0.01x+30,
(﹣0.01x+30)x﹣10x=7500,
解得,x1=500,x2=1500(舍去),
答:当该产品年产量为500吨时,当年可获得7500万元毛利润;
(2)设该厂能获得当年销售的毛利润为w万元,
w=(﹣0.01x+30)x﹣10x=﹣0.01(x﹣1000)2+10000,
∵0≤x≤800,
∴当x=800时,w取得最大值,此时w=9600,
答:当该产品年产量为800吨时,该厂能获得当年销售的最大毛利润,最大毛利润是9600万元.
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表给出了以下结论:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 | … |
①二次函数y=ax2+bx+c有最小值,最小值为﹣3;②当﹣<x<2时,y<0;③二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴的两侧;④当x<1时,y随x的增大而减小.则其中正确结论有( )
A. 4个 B. 3个 C. 2个 D. 1个