题目内容

如图,在平面直角坐标系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC经过旋转变换得到的.

(1)问由△ABC旋转得到的△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;
(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1、△ABC分别按顺时针、逆时针各旋转90°的两个三角形,并写出变换后与A1相对应点A2的坐标;
(3)利用变换前后所形成图案证明勾股定理(设△ABC两直角边为,斜边为).
解:(1)旋转角为90°,中心坐标为(-1,1)    ……… 3分
(2)如图,点对应点的坐标为(-2,-3) ……… 5分
     
(3)正方形面积:,
正方形的面积:,
设,AC=,BC=,AB=c
则,

  …………… 9分
(1)图象的旋转可以利用某点的旋转来找到旋转的角度和旋转中心;
(2)在解决题中第2问时,还需认真分析、观察旋转前后图案的特征,并利用其面积关系来验证勾股定理.
(3)利用正方形的面积的不同计算方法进行验证勾股定理
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网