题目内容
【题目】探索题
图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)你认为图b中的影部分的正方形的边长等于 .
(2)请用两种不同的方法求图b中阴影部分的面积.
方法1: (只列式,不化简)
方法2: (只列式,不化简)
(3)观察图b你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,.
(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,则 (a-b)2= .
【答案】(1)m-n;(2)(m+n)2-4mn;(m-n)2;(3)(m-n)2=(m+n)2-4mn;(4)44 .
【解析】(1)直接利用图b得出正方形的边长;
(2)利用已知图形结合边长为m+n的大正方形的面积减去长为m,宽为n的4个长方形面积以及边长为m﹣n的正方形的面积,分别求出答案;
(3)利用(2)中所求得出答案;
(4)利用(3)中关系式,将已知变形得出答案.
(1)阴影部分的正方形边长是:m﹣n.
故答案为:m﹣n;
(2)阴影部分的面积就等于边长为m﹣n的小正方形的面积,
方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m+n)2﹣4mn;
方法2:边长为m﹣n的正方形的面积,即(m﹣n)2;
(3)由题意可得:(m-n)2=(m+n)2-4mn.
故答案为:(m-n)2=(m+n)2-4mn.
(4)∵a+b=8,ab=5,∴(a+b)2=64,∴(a﹣b)2+4ab=64,∴(a﹣b)2=64﹣4×5=44.
练习册系列答案
相关题目