题目内容
【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=∠CGE.其中正确的结论是( )
A. ②③B. ①②④C. ①③④D. ①②③④
【答案】B
【解析】
根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.
①∵EG∥BC,
∴∠CEG=∠ACB,
又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,故正确;
②∵∠A=90°,
∴∠ADC+∠ACD=90°,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ADC+∠BCD=90°.
∵EG∥BC,且CG⊥EG,
∴∠GCB=90°,即∠GCD+∠BCD=90°,
∴∠ADC=∠GCD,故正确;
③条件不足,无法证明CA平分∠BCG,故错误;
④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,
∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,
∴∠DFE=360°-135°-90°=135°,
∴∠DFB=45°=∠CGE,,正确.
故选B.
练习册系列答案
相关题目