题目内容
【题目】(1)如图 1,四边形 ABCD 中,∠BAD=∠ADC=∠CBA=90°,AB=AD,点 E、F 分别在四边形 ABCD 的边 BC、CD 上,∠EAF=45°,点 G 在 CD 的延长线上,BE=DG,连接 AG,求证:EF=BE+FD.
(2)如图 2,四边形 ABCD 中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点 E、F 分别在边BC、CD 上,则当∠BAD=2∠EAF 时,仍有 EF=BE+FD 成立吗?说明理由.
(3)如图 3,四边形 ABCD 中,∠BAD≠90°,AB=AD,AC 平分∠BCD,AE⊥BC 于 E,AF⊥CD 交 CD 延长线于 F,若 BC=9,CD=4,则 CE= .(不需证明)
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)证明△ADG≌△ABE,根据全等三角形的性质得到AG=AE,∠DAG=
∠BAE,证明△AFG≌△AFE,得到GF=EF,证明结论;
(2)延长CB至 M,使 BM=DF,连接 AM,分别证明△ABM≌△ADF和△FAE≌△MAE,根据全等三角形的性质解答;
(3)证明 Rt△AEB≌Rt△AFD,根据全等三角形的性质得到BE=DF,根据题意列式计算.
(1)在△ADG和△ABE中,
,
∴△ADG≌△ABE(SAS),
∴AG=AE,∠DAG=∠BAE,
∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF 和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
(2)EF=BE+DF.
理由如下:如图2所示,延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,即EF=BE+DF;
(3)∵AC平分∠BCD,AE⊥BC,AF⊥CD,
∴AE=AF,
在Rt△AEB和Rt△AFD中,
,
∴Rt△AEB≌Rt△AFD(HL),
∴BE=DF,
由题意得,CE+BE=9,CE﹣BE=4,
解得,CE=6.5,
故答案为:6.5.
【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:
购买商品A的数量/个 | 购买商品B的数量/个 | 购买总费用/元 | |
第一次购物 | 6 | 5 | 1140 |
第二次购物 | 3 | 7 | 1110 |
第三次购物 | 9 | 8 | 1062 |
(1)小林以折扣价购买商品A、B是第 次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?