题目内容
【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.
【答案】(1)证明见解析;(2).
【解析】试题分析:
(1)由已知条件先证△BDG≌△ADC,再证△BDE≌△ADF即可得到所求结论;
(2)如图,由(1)可知∠ADC=90°,△DEF是等腰直角三角形, 结合F是AC的中点可得DF=AC=5,这样用勾股定理即可求得EF的长度.
试题解析:
(1)∵AD⊥BC于点D,
∴∠BDG=∠ADC=90°.
∵BD=AD,DG=DC,
∴△BDG≌△ADC,
∴BG=AC.
∵E,F分别是BG,AC的中点,
∴DE=BG,DF=AC.
∴DE=DF.
又∵BD=AD,BE=AF,
∴△BDE≌△ADF.
∴∠BDE=∠ADF.
∴∠EDF=∠EDG+∠ADF=∠EDG+∠BDE=∠BDG=90°.
∴DE⊥DF.
(2)如图,连接EF,
∵AC=10,∠ADC=90°,
∴DE=DF=AC=5.
又∵∠EDF=90°,
∴EF=.
练习册系列答案
相关题目