题目内容
【题目】如图,点C在⊙O上,AB为直径,BD与过点C的切线垂直于D,BD与⊙O交于点E.
(1)求证:BC平分∠DBA;
(2)如果cos∠ABD=,OA=2,求DE的长.
【答案】(1)证明见解析;(2)1.
【解析】
(1)如图1中,连接OC,由CD是⊙O的切线,推出OC⊥CD,由BD⊥CD,推出OC∥BD,推出∠OCB=∠CBD,由OC=OB,推出∠OCB=∠OBC,即可推出∠CBO=∠CBD;
(2)如图2,连接AC、AE.易知四边形AEDC是直角梯形,求出CD、AE、BE长,则DE可求出.
(1)证明:如图1中,连接OC,
∵CD是⊙O的切线,
∴OC⊥CD,∵BD⊥CD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBO=∠CBD,
∴BC平分∠DBA;
(2)解:如图连接AC、AE.
∵cos∠ABD=,
∴∠ABD=60°,
由(1)可知,∠ABC=∠CBD=30°,
在Rt△ACB中,∵∠ACB=90°,∠ABC=30°,AB=4,
∴BC=ABcos30°=2,
在Rt△ABE中,∵∠AEB=90°,∠BAE=30°,AB=4,
∴BE=AB=2,AE=2,
在Rt△CDB中,∵∠D=90°,∠CBD=30°,BC=2,
∴CD=BC=,BD=3,
∴DE=DB-BE=3-2=1.
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分) | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?