题目内容
【题目】某中学为了解本校学生平均每天的课外做作业的时间情况,随机抽取部分学生进行问卷调查,并将调查的结果分为A、B、C、D四个等级(设做作业时间为t小时,A:t<1;B:1≤t<1.5;C:1.5≤t<2;D:t≥2)根据调查结果绘成了如下两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)本次调查中,抽取的学生人数是 ;
(2)图2中α的度数是 ,并补全图1条形统计图;
(3)该校共有2800名学生名,请估计作业时间不少于2小时的人数为 ;
(4)在此次调查中,甲班有2人平均每天的作业时间超过2小时,乙班有3名学生平均每天作业时间超过2小时,现从这5人中选取2人参加座谈会,请用树状图或列表的方法,求出“所选的2人来自不同班级”的概率.
【答案】(1)200;(2)54°;(3)980;(4).
【解析】试题分析:(1)根据B类的人数和所占的百分比即可求出总数;
(2)用B的人数除以总人数再乘以360°,即可得到圆心角α的度数,总人数减去A、B、D人数得出C的人数即可补全图形;
(3)样本中D所占比例乘以总人数即可得;
(4)先设甲班学生为A1,A2,乙班学生为B1,B2,B3根据题意画出树形图,再根据概率公式列式计算即可.
试题解析:解:(1)共调查的中学生数是:60÷30%=200(人).故答案为:200;
(2)α=×360°=54°,C类的人数是:200﹣60﹣30﹣70=40(人),如图1:
故答案为:54°.
(3)估计作业时间不少于2小时的人数为×2800=980.故答案为:980;
(4)设甲班学生为A1,A2,乙班学生为B1,B2,B3,
一共有20种等可能结果,其中2人来自不同班级共有12种,∴P(2人来自不同班级)==.
【题目】已知关于x的方程x2﹣(2k+3)x+k2+2k=0,有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)若方程的两实数根x1,x2满足x1x2﹣x12﹣x22=﹣16,求实数k的值.
【题目】为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.
组别 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
根据图表中提供的信息,回答下列问题:
(1)女生身高在B组的有________人;
(2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.
【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是边AC上的一个动点,连接MB,过点M作MB的垂线交AB于点N. 设AM=x cm,AN=y cm.(当点M与点A或点C重合时,y的值为0)
探究函数y随自变量x的变化而变化的规律.
(1) 通过取点、画图、测量,得到了x与y的几组对应值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 1.7 | 1.6 | 1.2 | 0 |
(要求:补全表格,相关数值保留一位小数)
(2)建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AN=AM时,AM的长度约为 cm(结果保留一位小数).