题目内容
【题目】下列方程没有实数根的是( )
A. x3+2=0B. x2+2x+2=0
C. =x﹣1D. =0
【答案】B
【解析】
根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D.
A、x3+2=0,
x3=﹣2,
x=﹣,即此方程有实数根,故本选项不符合题意;
B、x2+2x+2=0,
△=22﹣4×1×2=﹣4<0,
所以此方程无实数根,故本选项符合题意;
C、=x﹣1,
两边平方得:x2﹣3=(x﹣1)2,
解得:x=2,
经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;
D、=0,
去分母得:x﹣2=0,
解得:x=2,
经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;
故选B.
练习册系列答案
相关题目