题目内容
【题目】阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.
已知:如图,AM,BN,CP是△ABC的三条角平分线.
求证:AM、BN、CP交于一点.
证明:如图,设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.
∵O是∠BAC角平分线AM上的一点( ),
∴OE=OF( ).
同理,OD=OF.
∴OD=OE( ).
∵CP是∠ACB的平分线( ),
∴O在CP上( ).
因此,AM,BN,CP交于一点.
【答案】已知;角平分线上的一点到这个角的两边的距离相等;等量代换;已知;角的内部到角的两边距离相等的点在这个角的平分线上.
【解析】
此题先利用角平分线性质得到O到各边的距离相等,再利用角平分线性质定理逆定理,得到O在第三个角的平分线上,从而证明结论成立.
证明:设AM,BN交于点O,过点O分别作OD⊥BC,OF⊥AB,垂足分别为点D,E,F.
∵O是∠BAC角平分线AM上的一点(已知),
∴OE=OF(角平分线上的一点到这个角的两边的距离相等).
同理,OD=OF.
∴OD=OE(等量代换).
∵CP是∠ACB的平分线(已知),
∴O在CP上(角的内部到角的两边距离相等的点在这个角的平分线上).
因此,AM,BN,CP交于一点.
练习册系列答案
相关题目