题目内容
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.
(1)设抛物线的解析式为:y=a(x+3)(x+1),
∵抛物线经过点C(0,3),
∴3=a×3×1,解得a=1.
∴抛物线的解析式为:y=(x+3)(x+1)=x2+4x+3.
(2)证明:在抛物线解析式y=x2+4x+3中,当x=-4时,y=3,∴P(-4,3).
∵P(-4,3),C(0,3),
∴PC=4,PC∥x轴.
∵一次函数y=kx-4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x轴,
∴四边形POQC是平行四边形,
∴∠OPC=∠AQC.
(3)①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,
∴△QND∽△QCO,
∴
=
,即
=
,解得:ND=3-
t.
设S=S△AMN,则:
S=
AM•ND=
•3t•(3-
t)=-
(t-
)2+
.
又∵AQ=7,∴点M到达终点的时间为t=
,
∴S=-
(t-
)2+
(0<t≤
).
∵-
<0,
<
,且x<
时,y随x的增大而增大,
∴当t=
时,△AMN的面积最大.
②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7-3t=5-t,解得t=1.
设P(x,x2+4x+3),
若直线PQ⊥MN,则:过P作直线PE⊥x轴,垂足为E,
则△PEQ∽△MDN,
∴
=
,
∴
=
∴x=
,
∴P(
,
)或(
,
)
∴直线PQ能垂直平分线段MN.
∵抛物线经过点C(0,3),
∴3=a×3×1,解得a=1.
∴抛物线的解析式为:y=(x+3)(x+1)=x2+4x+3.
(2)证明:在抛物线解析式y=x2+4x+3中,当x=-4时,y=3,∴P(-4,3).
∵P(-4,3),C(0,3),
∴PC=4,PC∥x轴.
∵一次函数y=kx-4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x轴,
∴四边形POQC是平行四边形,
∴∠OPC=∠AQC.
(3)①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,
∴△QND∽△QCO,
∴
ND |
OC |
NQ |
CQ |
ND |
3 |
5-t |
5 |
3 |
5 |
设S=S△AMN,则:
S=
1 |
2 |
1 |
2 |
3 |
5 |
9 |
10 |
5 |
2 |
45 |
8 |
又∵AQ=7,∴点M到达终点的时间为t=
7 |
3 |
∴S=-
9 |
10 |
5 |
2 |
45 |
8 |
7 |
3 |
∵-
9 |
10 |
7 |
3 |
5 |
2 |
5 |
2 |
∴当t=
7 |
3 |
②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7-3t=5-t,解得t=1.
设P(x,x2+4x+3),
若直线PQ⊥MN,则:过P作直线PE⊥x轴,垂足为E,
则△PEQ∽△MDN,
∴
PE |
EQ |
MD |
DN |
∴
x2+4x+3 |
4-x |
| ||
|
∴x=
-13±
| ||
6 |
∴P(
-13+
| ||
6 |
37-
| ||
18 |
-13-
| ||
6 |
37+
| ||
18 |
∴直线PQ能垂直平分线段MN.
练习册系列答案
相关题目