题目内容
【题目】在△ABC 中,∠ACB=90,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形, 则∠BAC 的度数为_________.
【答案】45°或60°
【解析】
根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,
当△BFE 都是等腰三角形,分三种情况讨论,即可求解.
∵∠ACB=90,△CFD是等腰三角形,
∴∠CDF=∠CFD=45°,
设∠BAC的度数为x,
∴∠B=90°-x,
∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,
∴∠DFE=∠BAC=x,
∴∠EFB=180°-45°-x=135°-x,
∵∠ADE=∠FDE,
∴∠ADE=(180°-45°)÷2=67.5°,
∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,
∴∠DEF=∠AED=112.5°-x,
∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,
∵△BFE 都是等腰三角形,分三种情况讨论:
①当FE=FB时,如图1,
则∠BEF=∠B,
∴90-x=2x-45,解得:x=45;
②当BF=BE时,
则∠EFB=∠BEF,
∴135-x=2x-45,
解得:x=60,
③当EB=EF时,如图2,
则∠B=∠EFB,
∴135-x=90-x,无解,
∴这种情况不存在.
综上所述:∠BAC 的度数为:45°或60°.
故答案是:45°或60°.
图1 图 2
练习册系列答案
相关题目