题目内容
【题目】数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。小白在草稿纸上画了一条数轴进行操作探究:
操作一:
(1)折叠纸面,若使1表示的点与﹣1表示的点重合,则﹣2表示的点与_______表示的点重合;
操作二:
(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:
①3表示的点与_______表示的点重合;
②若数轴上A、B两点之间距离为7(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是______________;
操作三:
(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(例如下图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_____________________.
【答案】(1)2 (2)①-5;②-,(3)或或
【解析】试题分析:(1)根据对称性找到折痕的点为原点O,可以得出-2与2重合;
(2)根据对称性找到折痕的点为-1,
①设3表示的点与数a表示的点重合,根据对称性列式求出a的值;
②因为AB=7,所以A到折痕的点距离为3.5,因为折痕对应的点为-1,由此得出A、B两点表示的数;
(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,设AB=a,BC=a,CD=2a,得a+a+2a=9,a=,得出AB、BC、CD的值,计算得x的值,同理可得出如图2、3对应的x的值.
试题解析:操作一,
(1)∵表示的点1与-1表示的点重合,
∴折痕为原点O,
则-2表示的点与2表示的点重合.
操作二:
(2)∵折叠纸面,若使1表示的点与-3表示的点重合,
则折痕表示的点为-1,
①设3表示的点与数a表示的点重合,
则3-(-1)=-1-a,
a=-5;
②∵数轴上A、B两点之间距离为7,
∴数轴上A、B两点到折痕-1的距离为3.5,
∵A在B的左侧,
则A、B两点表示的数分别是-4.5和2.5;
操作三:
(3)设折痕处对应的点所表示的数是x,
如图1,
当AB:BC:CD=1:1:2时,
设AB=a,BC=a,CD=2a,
a+a+2a=9,
a=,
∴AB=,BC=,CD=,
x=-1++=,
如图2,
当AB:BC:CD=1:2:1时,
设AB=a,BC=2a,CD=a,
a+a+2a=9,
a=,
∴AB=,BC=,CD=,
x=-1++=,
如图3,
当AB:BC:CD=2:1:1时,
设AB=2a,BC=a,CD=a,
a+a+2a=9,
a=,
∴AB=,BC=CD=,
x=-1++=,
综上所述:则折痕处对应的点所表示的数可能是或或.