题目内容

在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面积.
考点:相似三角形的判定与性质
专题:
分析:(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;
(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.
解答:(1)证明:∵D是BC的中点,DE⊥BC,
∴BE=CE,
∴∠B=∠DCF,
∵AD=AC,
∴∠FDC=∠ACB,
∴△ABC∽△FCD;

(2)解:过A作AG⊥CD,垂足为G.
∵AD=AC,
∴DG=CG,
∴BD:BG=2:3,
∵ED⊥BC,
∴ED∥AG,
∴△BDE∽△BGA,
∴ED:AG=BD:BG=2:3,
∵DE=3,
∴AG=
9
2

∵△ABC∽△FCD,BC=2CD,
S△FCD
S△ABC
=(
CD
BC
2=
1
4

∵S△ABC=
1
2
×BC×AG=
1
2
×8×
9
2
=18,
∴S△FCD=
1
4
S△ABC=
9
2
点评:此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网