题目内容
【题目】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径;
(2)有一艘宽5m的货船,船舱顶部为长方形,并高出水面3.6m,求此货船是否能顺利通过拱桥?
【答案】(1)r=6.5;(2)此货船能不顺利通过这座拱桥,见解析
【解析】
(1)根据垂径定理和勾股定理求解;
(2)连接ON,OB,通过求距离水面2米高处即ED长为2时,桥有多宽即MN的长与货船顶部的3米做比较来判定货船能否通过.先根据半弦,半径和弦心距构造直角三角形求出半径的长,再根据Rt△OEN中勾股定理求出EN的长,从而求得MN的长.
解:(1)如图,连接ON,OB.
∵OC⊥AB,
∴D为AB中点,
∵AB=12m,
∴BD=AB=6m.
又∵CD=4m,
设OB=OC=ON=r,则OD=(r﹣4)m.
在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,
解得:r=6.5.
(2)∵CD=4m,船舱顶部为长方形并高出水面AB=2m,
∴CE=4﹣3.6=0.4(m),
∴OE=r﹣CE=6.5﹣0.4=6.1(m),
在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣6.12=5.04(m2),
∴EN=(m).
∴MN=2EN=2×≈4.48m<5m.
∴此货船能不顺利通过这座拱桥.
练习册系列答案
相关题目