题目内容
已知反比例函数 ,当时, 随的增大而增大,则关于的方程的解的情是 .
有两个不相等的实数根
根据反比例函数y= 的性质可以得到ab<0;然后计算关于x的方程ax2-2x+b=0的根的判别式△=4-4ab=4(1-ab)的符号,根据根的判别式的符号确定该方程的根的情况.
解:∵反比例函数y=,当x>0时,随x的增大而增大,
∴ab<0;
∴-ab>0,
∴1-ab>1;
∴关于x的方程ax2-2x+b=0的根的判别式△=4-4ab=4(1-ab)>4>0,
∴该方程有两个不相等的实数根.
故答案是:②.
本题主要考查了一元二次方程的根的判别式与反比例函数的性质.根据反比例函数的性质求得ab<0是解题的关键.
解:∵反比例函数y=,当x>0时,随x的增大而增大,
∴ab<0;
∴-ab>0,
∴1-ab>1;
∴关于x的方程ax2-2x+b=0的根的判别式△=4-4ab=4(1-ab)>4>0,
∴该方程有两个不相等的实数根.
故答案是:②.
本题主要考查了一元二次方程的根的判别式与反比例函数的性质.根据反比例函数的性质求得ab<0是解题的关键.
练习册系列答案
相关题目