题目内容
【题目】如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若AC=6,AB=10,则⊙O的半径为 .
【答案】
【解析】连接OD.设⊙O的半径为r.
∵BC切⊙O于点D,
∴OD⊥BC.
∵∠C=90°,
∴OD∥AC,
∴△OBD∽△ABC.
∴ ,即10r=6(10-r).
解得r= .
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目