题目内容
【题目】小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB是骨柄长OA的 ,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为24 cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB为( )
A.21cm
B.20 cm
C.19cm
D.18cm
【答案】D
【解析】如图所示:
由题意可得:当在矩形布料上裁剪下了最大的扇面,此时扇形与矩形的边长相切,切点为E,
过点O作OF⊥CB,于点F,
则∠ABC=∠OBF=30°,OF= BO,AC= AB,
设FO=xcm,则BF= xcm,BO=2xcm,
∵折扇扇面的宽度AB是骨柄长OA的 ,
∴AB=6xcm,
故AC=3xcm,BC=3 xcm,
故2×( x+3 x)=24 ,
解得:x=3,
故AB=6x=18(cm),
故D符合题意.
所以答案是:D.
【考点精析】通过灵活运用含30度角的直角三角形和勾股定理的概念,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
【题目】节约1度电,可以减少0.785千克碳排放.某省从2018年6月1日起执行新的居民生活用电价格,一户一表居民用户将实施阶梯式累进电价:月用电量低于50千瓦时(含50千瓦时)部分不调整,电价每千瓦时0.53元;月用电量在51~200千瓦时部分,电价每千瓦时上调0.03元;月用电量超过200千瓦时部分,电价每千瓦时上调0.10元.
小明家属一户一表居民用户,将实施阶梯式累进电价.7月份至8月份的电费缴款情况如下表:
计算日期 | 上期示度 | 本期示度 | 电量 | 金额(元) |
20180710 | 3 230 | 3 296 | 66 | 34.98 |
20180810 | 3 296 | 3 535 | 239 | 135.07 |
(1)根据上述资料对阶梯式累进电价的描述,设电量为x千瓦时,金额为y元,表示出金额对于电量的函数关系,并画出图象.
(2)解释小明家8月份电费的计算详情.
(3)为节约用电,小明对以后制订了详细的用电计划,如果实际每天比计划多用2千瓦时,下月用电量将会超过240千瓦时;如果实际每天比计划节约2千瓦时,那么下月用电量将会不超过180千瓦时,下月(30天)每天用电量应控制在什么范围内?