题目内容
【题目】阅读下面的材料,先完成阅读填空,再按要求答题:
(1)阅读填空
sin30°= ,cos30°= ,则sin230°+cos230°= ;①
sin45°= ,cos45°= ,则sin245°+cos245°= ;②
sin60°= ,cos60°= ,则sin260°+cos260°= .③
…
观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④
(2)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;
(3)已知:∠A为锐角(cosA>0)且sinA= ,求cosA.
【答案】
(1)1;1;1;1
(2)
解:如图,过点B作BD⊥AC于D,则∠ADB=90°.
∵sinA= ,cosA= ,
∴sin2A+cos2A=( )2+( )2= ,
∵∠ADB=90°,
∴BD2+AD2=AB2,
∴sin2A+cos2A=1
(3)
解:∵sinA= ,sin2A+cos2A=1,∠A为锐角,
∴cosA= =
【解析】解:∵sin30°= ,cos30°= ,
∴sin230°+cos230°=( )2+( )2= + =1;①
∵sin45°= ,cos45°= ,
∴sin245°+cos245°=( )2+( )2= + =1;②
∵sin60°= ,cos60°= ,
∴sin260°+cos260°=( )2+( )2= + =1.③
观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④
【考点精析】利用勾股定理的概念和同角三角函数的关系(倒数、平方和商)对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;各锐角三角函数之间的关系:平方关系(sin2A+cos2A=1);倒数关系(tanAtan(90°—A)=1);弦切关系(tanA=sinA/cosA ).
【题目】2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题: 频率分布表
分数段 | 频数 | 频率 |
50.5﹣60.5 | 16 | 0.08 |
60.5﹣70.5 | 40 | 0.2 |
70.5﹣80.5 | 50 | 0.25 |
80.5﹣90.5 | m | 0.35 |
90.5﹣100.5 | 24 | n |
(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= , n=;
(2)补全频数分布直方图;
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?