题目内容
【题目】如图,在边长为2的等边△ABC中,AD是BC边上的高线,点E是AC中点,点P是AD上一动点,则PC+PE的最小值是 .
【答案】
【解析】解:如连接BE,与AD交于点P,此时PE+PC最小,
∵△ABC是等边三角形,AD⊥BC,
∴PC=PB,
∴PE+PC=PB+PE=BE,
即BE就是PE+PC的最小值,
∵△ABC是一个边长为2cm的正三角形,点E是边AC的中点,
∴∠BEC=90°,CE=1cm,
∴BE= = ,
∴PE+PC的最小值是 .
所以答案是 ,
【考点精析】掌握轴对称-最短路线问题是解答本题的根本,需要知道已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.
练习册系列答案
相关题目
【题目】我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:
西瓜种类 | A | B | C |
每辆汽车运载量(吨) | 4 | 5 | 6 |
每吨西瓜获利(百元) | 16 | 10 | 12 |
(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?