题目内容
【题目】一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利情况如表所示:
销售方式 | 粗加工后销售 | 精加工后销售 |
每吨获利(元) | 1000 | 2000 |
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工. ①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
【答案】
(1)解:设应安排x天进行精加工,y天进行粗加工,
根据题意得 ,
解得 ,
答:应安排4天进行精加工,8天进行粗加工
(2)解:①精加工m吨,则粗加工(140﹣m)吨,根据题意得:
W=2000m+1000(140﹣m)
=1000m+140000;
②∵要求在不超过10天的时间内将所有蔬菜加工完,
∴ + ≤10,
解得:m≤5
∴0≤m≤5,
又∵在一次函数W=1000m+140000中,k=1000>0,
∴W随m的增大而增大,
∴当m=5时,W最大=1000×5+140000=145000.
∴精加工天数为5÷5=1,
粗加工天数为(140﹣5)÷15=9.
∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元
【解析】(1)本题等量关系为:精加工天数+粗加工天数=12,精加工吨数+粗加工吨数=140,列出方程组求解即可.(2)①根据精加工吨数和粗加工吨数的等量关系,用精加工吨数m来表示粗加工吨数,在列出W与m之间的关系,②根据题意要求先确定m的取值范围,然后表示W并求出W最大值.