题目内容
【题目】如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若sinG=0.6,CF=4,求GA的长.
【答案】(1)见解析;(2)见解析;(3)AG=5.
【解析】
(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.
(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.
(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.
(1)证明:连结OC,如图,
∵C是劣弧AE的中点,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)证明:连结AC、BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵C是劣弧AE的中点,
∴,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:∵CG∥AE,
∴∠FAD=∠G,
∵sinG=0.6,
∴sin∠FAD==0.6,
∵∠CDA=90°,AF=CF=4,
∴DF=2.4,
∴AD=3.2,
∴CD=CF+DF=6.4,
∵AF∥CG,
∴,
∴
∴DG=,
∴AG=DG﹣AD=5.
练习册系列答案
相关题目