题目内容
【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=4,⊙O的直径为10,求BD的长度.
【答案】(1)证明见解析;(2)8.
【解析】
(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;
(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,在Rt△AOF中,由勾股定理得,从而求得AF的值,进而就可求得BD的长.
(1)证明:连接OC,
∵OA=OC,
∴∠OCA=∠OAC,
∵AC平分∠PAE,
∴∠DAC=∠CAO,
∴∠DAC=∠OCA,
∴PB∥OC,
∵CD⊥PA,
∴CD⊥OC,CO为⊙O半径,
∴CD为⊙O的切线;
(2)解:过O作OF⊥AB,垂足为F,
∴∠OCD=∠CDA=∠OFD=90°,
∴四边形DCOF为矩形,
∴OC=FD=5,OF=CD=4.
在Rt△AOF中,由勾股定理得AF2+OF2=OA2.
∴AF===3,
∵OF⊥AB,由垂径定理知,F为AB的中点,
∴FB=AF=3.
∴BD=DF+BF=5+3=8.
练习册系列答案
相关题目