题目内容
【题目】如图,AB是的弦,D为半径OA上的一点,过D作交弦AB于点E,交于点F,且求证:BC是的切线.
【答案】见解析
【解析】
试题连接OB,要证明BC是⊙O的切线,即要证明OB⊥BC,即要证明∠OBA+∠EBC=90°,由OA=OB,CE=CB可得:∠OBA=∠OAB,∠CBE=∠CEB,所以即要证明∠OAB+∠CEB=90°,又因为∠CEB=∠AED,所以即要证明∠OAB+∠AED=90°,由CD⊥OA不难证明.
试题解析:
证明:连接OB,
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC,
又∵CD⊥OA,
∴∠A+∠AED=∠A+∠CEB=90°,
∴∠OBA+∠ABC=90°,
∴OB⊥BC,
∴BC是⊙O的切线.
练习册系列答案
相关题目