题目内容
【题目】在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.
求证:CE⊥BE.
【答案】证明:延长CE交BA的延长线于点G,即交点为G,
∵E是AD中点,
∴AE=ED,
∵AB∥CD,
∴∠CDE=∠GAE,∠DCE=∠AGE,
∴△CED≌△GEA,
∴CE=GE,AG=DC,
∴GB=BC=3,
∴EB⊥EC.
【解析】延长CE交BA的延长线于点G,然后依据AAS可证明△CED≌△GEA,依据全等三角形的性质CE=GE,接下来,在求得BG的长,从而可得到BC=BG,最后依据等腰三角形三线合一的性质可证明CE⊥BE.
【考点精析】利用直角梯形对题目进行判断即可得到答案,需要熟知一腰垂直于底的梯形是直角梯形.
练习册系列答案
相关题目
【题目】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)
每人加工零件数 | 54 | 45 | 30 | 24 | 21 | 12 |
人 数 | 1 | 1 | 2 | 6 | 3 | 2 |
(1)写出这15人该月加工零件数的平均数、中位数和众数;
(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.