题目内容
【题目】如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为( )
A.18B.20C.22D.24
【答案】B
【解析】
由矩形ABCD中,AB=5,AD=12,可求得BC与CD的长,然后由勾股定理求得AC的长,再由三角形中位线的性质求得OM的长,由直角三角形斜边上的中线等于斜边上的一半,求得OB的长,继而求得四边形ABOM的周长.
∵矩形ABCD中,AB=5,AD=12,
∴BC=AD=12,CD=AB=5,∠ABC=90°,OA=OC,
∴AC==13,
∴OB=OA=OC=AC=6.5,
∵M是AD的中点,
∴OM=CD=2.5,AM=AD=6,
∴四边形ABOM的周长为:AB+OB+OM+AM=5+6.5+2.5+6=20.
故选:B.
练习册系列答案
相关题目
【题目】为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.
甲型 | 乙型 | |
价格(元/台) | a | b |
有效半径(米/台) | 150 | 100 |
(1)求a、b的值;
(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.