题目内容
【题目】如图,在△ABC中,∠C=90°, ∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,又分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.
求证:(1)点D在AB的中垂线上.
(2)当CD=2时,求△ABC的面积.
【答案】(1)见解析;(2)6
【解析】
(1)根据作图可知AD是∠CAB平分线,然后由等角对等边和线段垂直平分线的性质可得结论;
(2)根据含30度角的直角三角形的性质求出AD和AC,进而求出BC的长即可解决问题.
解:(1)根据作图可知AD是∠CAB平分线,
∵∠C=90°, ∠B=30°,
∴∠DAB=∠DAC=∠B=30°,
∴DA=DB,
∴点D在AB的中垂线上;
(2)∵∠DAC=30°,CD=2,
∴AD=2CD=4,
∴,BD=AD=4,
∴BC=CD+BD=6,
∴.
练习册系列答案
相关题目