题目内容

【题目】如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.

(1)求证:△GBE∽△GEF.

(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.

(3)如图2,连接ACGF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.

【答案】(1)见解析;(2)y=4﹣x+(0x3);(3)当△AGQ与△CEP相似,线段AG的长为24﹣

【解析】

(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
(2)先判断出△BEG∽△CFE进而得出CF=

,即可得出结论;
(3)分两种情况,①△AGQ∽△CEP时,判断出BGE=60°,即可求出BG;
②△AGQ∽△CPE时,判断出EGAC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.

(1)如图1,延长FEAB的延长线于F',

∵点EBC的中点,

∴BE=CE=2,

∵四边形ABCD是正方形,

∴AB∥CD,

∴∠F'=∠CFE,

在△BEF'和△CEF中,

∴△BEF'≌△CEF,

∴BF'=CF,EF'=EF,

∵∠GEF=90°,

∴GF'=GF,

∴∠BGE=∠EGF,

∵∠GBE=∠GEF=90°,

∴△GBE∽△GEF;

(2)∵∠FEG=90°,

∴∠BEG+∠CEF=90°,

∵∠BEG+∠BGE=90°,

∴∠BGE=∠CEF,

∵∠EBG=∠C=90°,

∴△BEG∽△CFE,

由(1)知,BE=CE=2,

∵AG=x,

∴BG=4﹣x,

∴CF=

由(1)知,BF'=CF=

由(1)知,GF'=GF=y,

∴y=GF'=BG+BF'=4﹣x+

CF=4时,即:=4,

∴x=3,(0≤x≤3),

即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);

(3)∵AC是正方形ABCD的对角线,

∴∠BAC=∠BCA=45°,

∵△AGQ与△CEP相似,

∴①△AGQ∽△CEP,

∴∠AGQ=∠CEP,

由(2)知,∠CEP=∠BGE,

∴∠AGQ=∠BGE,

由(1)知,∠BGE=∠FGE,

∴∠AGQ=∠BGQ=∠FGE,

∴∠AGQ+∠BGQ+∠FGE=180°,

∴∠BGE=60°,

∴∠BEG=30°,

Rt△BEG中,BE=2,

∴BG=

∴AG=AB﹣BG=4﹣

②△AGQ∽△CPE,

∴∠AQG=∠CEP,

∵∠CEP=∠BGE=∠FGE,

∴∠AQG=∠FGE,

∴EG∥AC,

∴△BEG∽△BCA,

∴BG=2,

∴AG=AB﹣BG=2,

即:当△AGQ与△CEP相似,线段AG的长为24﹣

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网