题目内容

【题目】如图,四边形ABCD是平行四边形,∠BAD的平分线交BD于点E , 交CD于点F , 交BC的延长线于点G , 则下列结论中正确的是(  )
A.AE2=EFFG
B.AE2=EFEG
C.AE2=EGFG
D.AE2=EFAG

【答案】B
【解析】解答:∵四边形ABCD是平行四边形,∴△ADE∽△EGB , △DEF∽△AEB
= =
=
AE2=EFEG
所以选项B正确,
故选B
分析:解答此题的关键是利用平行四边形证明出△ADE∽△EGB , △DEF∽△AEB , 然后利用对应边成比例即可解答此题.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网