题目内容

如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为________°.

45
分析:根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.
解答:∵AB=AC,∠A=30°,
∴∠ABC=∠ACB=75°,
∵AB的垂直平分线交AC于D,
∴AD=BD,
∴∠A=∠ABD=30°,
∴∠BDC=60°,
∴∠CBD=180°-75°-60°=45°.
故填45.
点评:此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°-30°更简单些.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网