题目内容
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
【答案】
(1)
解:在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣ ,
∴抛物线解析式为y=﹣ (x﹣2)2+3,即y=﹣ x2+3x
(2)
解:△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形
(3)
解:存在.理由如下:
设直线BE解析式为y=kx+b,
把B、E坐标代入可得 ,解得 ,
∴直线BE解析式为y= x+1,
当x=2时,y=2,
∴F(2,2),
①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,
∴点M的纵坐标为2或﹣2,
在y=﹣ x2+3x中,令y=2可得2=﹣ x2+3x,解得x= ,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x= ,
∴M点坐标为( ,2);
在y=﹣ x2+3x中,令y=﹣2可得﹣2=﹣ x2+3x,解得x= ,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x= ,
∴M点坐标为( ,﹣2);
②当AF为平行四边形的对角线时,
∵A(4,0),F(2,2),
∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
设M(t,﹣ t2+3t),N(x,0),
则﹣ t2+3t=2,解得t= ,
∵点M在抛物线对称轴右侧,
∴x>2,
∴t= ,
∴M点坐标为( ,2)
综上可知存在满足条件的点M,其坐标为( ,2)或( ,﹣2)
【解析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.
【考点精析】本题主要考查了勾股定理的概念和平行四边形的性质的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.