题目内容
如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90°后的图形△A′B′C′,并计算对应点B和B′之间的距离.分析:在AB的左边做AB′⊥AB,AC′⊥AC,且AB′=AB,AC′=AC,连接B′C′即可;把BB′放在直角边长为2,4的直角三角形的斜边上,利用勾股定理即可求得BB′长.
解答:解:所画图形如下所示:
△A′B′C′即为所求;
其中B和B¹之间的距离为
=2
.
△A′B′C′即为所求;
其中B和B¹之间的距离为
22+42 |
5 |
点评:本题考查旋转作图及勾股定理的灵活运用.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
练习册系列答案
相关题目
如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为( )
A、(a-b)2=a2-2ab+b2 | B、(a+b)2=a2+2ab+b2 | C、a2-b2=(a+b)(a-b) | D、a2+ab=a(a+b) |