题目内容
【题目】如图,在中,,点为上一点,以点为圆心,为半径的与相切于点,交的延长线于点.
(1)求证:;
(2)若,,求的半径和的长.
【答案】(1)见解析;(2)的半径是6,的长是.
【解析】
(1)利用切线的性质证得OD=OC,证得BO为的平分线,利用等角的余角相等结合对顶角相等即可证得结论;
(2)利用正切函数求得AB=20,设的半径为R,在中,利用切线长定理求得AD=8,AO=16-R,根据勾股定理求得R的值,在中,求得,利用正弦函数即可求解.
(1)如图,连接,
∵与相切于点,
∴,
∵,
∴,
∴BC是的切线,
又,
∴为的平分线,
∴,
∵于点,
∴,
∴,,
∴,
∵,
∴;
(2)∵,,
∴AC=16,
∵,即,
∴AB=20,
由(1)得,BD、BC都是切线,
∴BD=BC=12,
∴AD=AB-BD=20-12=8,
设的半径为R,
在中,OD=R,AO=16-R,AD=8,
∵,即,
∴R=6,
在中,BC=12,OC=6,
∵,即,
∴,
∵,
∴,即,
∴.
【题目】某社区为了加强社区居民对防护新型冠状病毒知识的了解,通过微信宣传防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:
收集数据:
甲小区:85 80 95 100 90 95 85 65 75 85
90 90 70 90 100 80 80 90 95 75
乙小区:80 60 80 95 65 100 90 85 85 80
95 75 80 90 70 80 95 75 100 90
整理数据
成绩x(分) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲小区 | 2 | 5 | a | b |
乙小区 | 3 | 7 | 5 | 5 |
分析数据
统计量 | 平均数 | 中位数 | 众数 |
甲小区 | 85.75 | 87.5 | c |
乙小区 | 83.5 | d | 80 |
应用数据
(1)填空:a= ,b= ,c= ,d= ;
(2)根据以上数据, (填“甲”或“乙”)小区对新型冠状病毒肺炎防护知识掌握得更好,理由是 (一条即可).
(3)若甲小区共有800人参加答卷,请估计甲小区成绩高于