题目内容
【题目】如图,点A、B在同一条直线上,OD、OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.
【答案】(1)90°;(2)155°.
【解析】
(1)由已知条件和观察图形,再利用角平分线的性质就可求出角的度数;
(2)由已知条件和观察图形,再利用角平分线的性质就可求出角的度数.
解:(1)如图,因为OD是∠AOC的平分线,
所以∠COD=∠AOC,
又因为OE是∠BOC的平分线,
所以∠COE=∠BOC.
所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.
(2)由(1)可知,∠BOE=∠COE=90°-∠COD=25°.
所以∠AOE=∠AOB-∠BOE=155°.
故答案为:(1)90°;(2)155°.
【题目】某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
完成作业 | 单元测试 | 期末考试 | |
小张 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.
①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
【题目】一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型
手机x部,B型手机y部.三款手机的进价和预售价如下表:
手机型号 | A型 | B型 | C型 |
进 价(单位:元/部) | 900 | 1200 | 1100 |
预售价(单位:元/部) | 1200 | 1600 | 1300 |
(1)用含x,y的式子表示购进C型手机的部数;
(2)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.