题目内容
【题目】如图,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB边的中点,E是AC边上一点,联结DE,过点D作DF⊥DE交BC边于点F,联结EF.
(1)如图1,当DE⊥AC时,求EF的长;
(2)如图2,当点E在AC边上移动时,∠DFE的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE的正切值;
(3)如图3,联结CD交EF于点Q,当△CQF是等腰三角形时,请直接写出BF的长.
【答案】(1)EF=5;(2)不变,理由见解析;(3)BF的长为3或或.
【解析】试题分析:(1)由cosA=,根据锐角三角函数的定义可求可求AC=8,AE=4,在Rt△EDF中,由勾股定理求出DE=3,在Rt△AED中,由勾股定理求出EF的长;
(2)过点D作DH⊥AC,DG⊥BC,垂足分别为点H、G,由(1)可得DH=3,DG=4,再证△EDH∽△FDG,得到,然后根据正切定义求解;
(3)分QF=QC,FQ=FC,CF=CQ三种情况求解.
解:(1)∵∠ACB=90°,
∴,
∵AC=8,
∴AB=10,
∵D是AB边的中点,
∴,
∵DE⊥AC,
∴∠DEA=∠DEC=90°,
∴,
∴AE=4,
∴CE=8﹣4=4,
∵在Rt△AED中,AE2+DE2=AD2,
∴DE=3,
∵DF⊥DE,
∴∠FDE=90°,
又∵∠ACB=90°,
∴四边形DECF是矩形,
∴DF=EC=4,
∵在Rt△EDF中,DF2+DE2=EF2,
∴EF=5
(2)不变
如图2,
过点D作DH⊥AC,DG⊥BC,垂足分别为点H、G,
由(1)可得DH=3,DG=4,
∵DH⊥AC,DG⊥BC,
∴∠DHC=∠DGC=90°
又∵∠ACB=90°,
∴四边形DHCG是矩形,
∴∠HDG=90°,
∵∠FDE=90°,
∴∠HDG﹣∠HDF=∠EDF﹣∠HDF,
即∠EDH=∠FDG,
又∵∠DHE=∠DGF=90°
∴△EDH∽△FDG,
∴,
∵∠FDE=90°,
∴,
(3)①当QF=QC时,
∴∠QFC=∠QCF,
∵∠EDF+∠ECF=180°,
∴点D,E,C,F四点共圆,
∴∠ECQ=∠DFE,∠DFE+∠QFC=∠ECQ+∠QCF=∠ACB=90°,
即∠DFC=90°,
又∵∠ACB=90°,D是AB的中点,
∴,
∴,
②当FQ=FC时,
∴∠BCD=∠CQF,
∵点D是AB的中点,
∴BD=CD=AB=5,
∴∠BDC=∠BCD,
∴∠BCD=∠FCQ,∠BDC=∠CFQ,
∴△FQC∽△DCB,
由①知,点D,E,C,F四点共圆,
∴∠DEF=∠DCF,
∵∠DQE=∠FQC,
∴△FQC∽△DEQ,
即:△FQC∽△DEQ∽△DCB
∵在Rt△EDF中,,
∴设DE=3k,则DF=4k,EF=5k,
∵∠DEF=∠DCF=∠CQF=∠DQE,
∴DE=DQ=3k,
∴CQ=5﹣3k,
∵△DEQ∽△DCB,
∴,
∴,
∴,
∵△FQC∽△DCB,
∴,
∴,
解得,
∴,
∴,
③当CF=CQ时,如图3,
∴∠BCD=∠CQF,
由②知,CD=BD,
∴∠BDC=∠BCD,
∵△EDQ∽△BDK,
在BC边上截取BK=BD=5,过点D作DH⊥BC于H,
∴DH=AC=4,BH=BC=3,由勾股定理得,
同②的方法得,△CFQ∽△EDQ,
∴设DE=3m,则EQ=3m,EF=5m,
∴FQ=2m,
∵△EDQ∽△BDK,
∴,
∴DQ=m,
∴CQ=FC=5﹣m,
∵△CQF∽△BDK,
∴,
∴,
解得m=,
∴,
∴.
即:△CQF是等腰三角形时,BF的长为3或或.