题目内容
【题目】如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l,求⊙O的半径.
【答案】解:如图:
连接OA,由OC⊥AB于D,得:AD=DB= AB=4.
设⊙O的半径为r,在Rt△OAD中,OA2=AD2+OD2
∴r2=(r﹣1)2+42
整理得:2r=17
∴r= .
所以圆的半径是 .
【解析】根据垂径定理得到直角三角形,然后在直角三角形中运用勾股定理计算出半径的长.
【考点精析】根据题目的已知条件,利用勾股定理的概念和垂径定理的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
练习册系列答案
相关题目
【题目】某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭,8月份比7月份节约用水情况统计:
节水量(m3) | 0.2 | 0.3 | 0.4 | 0.5 |
家庭数(个) | 1 | 2 | 3 | 4 |
那么这10个家庭8月份比7月份的节水量的平均数是( )
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3