题目内容

如图(1),抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).      (注:图(2)、图(3)为解答备用图)
(1)求k值及A和B的坐标;
(2)设抛物线y=x2-2x+k与的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2-2x+k与上求点Q,使△BCQ是以BC为直角边的直角三角形.
精英家教网
分析:(1)将C点坐标代入抛物线解析式可求k的值,由抛物线解析式求A,B两点坐标;
(2)根据A、B、M、N四点坐标,将四边形分割为两个三角形和一个梯形求面积;
(3)只要使△DBC面积最大即可,由此求D点坐标;
(4)分别过B,C两点作线段BC的垂线,交抛物线于Q点,求直线BQ或CQ的解析式,与抛物线解析式联立可求Q点坐标.
解答:解:(1)将C(0,-3)代入抛物线y=x2-2x+k中,得k=-3,
∴抛物线解析式为y=x2-2x-3,令y=0,得x=-1或3,
∴A(-1,0),B(3,0);

(2)如图(1),过M点作MN⊥AB,垂足为N,由y=x2-2x-3=(x-1)2-4,可知M(1,-4),
∴S四边形ABMC=S△ACO+S梯形OCMN+S△BMN=
1
2
×1×3+
1
2
×(3+4)×1+
1
2
×(3-1)×4=9;

(3)存在,如图(2),设D(m,m2-2m-3),过D点作DE⊥AB,垂足为E,则
S四边形ABDC=S△ACO+S梯形OCDE+S△BDE
=
1
2
×1×3+
1
2
×[3-(m2-2m-3)]×m+
1
2
×(3-m)×[-(m2-2m-3)]
=-
3
2
m2+
9
2
m+6,
∵-
3
2
<0,∴当m=-
9
2
-3
=
3
2
时,S四边形ABDC最大,此时D(
3
2
,-
15
4
);

(4)如图(3),∵B(3,0),C(0,-3),
∴△OBC为等腰直角三角形,
过B作线段BC的垂线,交抛物线于Q′点,则直线BQ′:y=-x+3,联立
y=-x+3
y=x2-2x-3

解得Q′(-2,5),
过C作线段BC的垂线,交抛物线于Q点,同理可得Q(1,-4).
∴Q(1,-4)或(-2,5).
精英家教网
点评:本题考查了二次函数的综合运用.关键是根据题意求抛物线解析式,将四边形分割为三角形与梯形的面积和求解,同时考查了坐标系中,线段的垂直关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网