题目内容
【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正确的是( ).
A. ①②③④ B. ①②④ C. ①③④ D. ①②③
【答案】D
【解析】由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.
∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a<0,
∴ab<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以②正确;
∵x=1时,y<0,
∴a+b+c<0,
而c<0,
∴a+b+2c<0,所以③正确;
∵抛物线的对称轴为直线x=-=1,
∴b=-2a,
而x=-1时,y>0,即a-b+c>0,
∴a+2a+c>0,所以④错误.
故选D.
练习册系列答案
相关题目