题目内容
【题目】如图,,点
、
分别在
、
上,连接
,
、
的平分线交于点
,
、
的平分线交于点
.
求证:四边形
是矩形.
小明在完成
的证明后继续进行了探索,过点
作
,分别交
、
于点
、
,过点
作
,分别交
、
于点
、
,得到四边形
.此时,他猜想四边形
是菱形.请在下列框图中补全他的证明思路.
小明的证明思路:由,
,
易证,四边形
是平行四边形.要证□
是菱形,只要证
.由已知条件________,
,可证
,故只要证
,即证
,易证________,________,故只要证
,易证
,
,________,故得
,即可得证.
【答案】(1)证明见解析;(2)FG平分∠CFE,GE=FH、∠GME=∠FQH,∠GEF=∠EFH.
【解析】
(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形;
(2)利用菱形的判定方法首先得出要证MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可.
(1)证明:∵EH平分∠BEF,
∴∠FEH=∠BEF,
∵FH平分∠DFE,
∴∠EFH=∠DFE,
∵AB∥CD,
∴∠BEF+∠DFE=180°,
∴∠FEH+∠EFH=(∠BEF+∠DFE)=
×180°=90°,
∵∠FEH+∠EFH+∠EHF=180°,
∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,
同理可得:∠EGF=90°,
∵EG平分∠AEF,
∴∠EFG=∠AEF,
∵EH平分∠BEF,
∴∠FEH=∠BEF,
∵点A、E、B在同一条直线上,
∴∠AEB=180°,
即∠AEF+∠BEF=180°,
∴∠FEG+∠FEH=(∠AEF+∠BEF)=
×180°=90°,
即∠GEH=90°
∴四边形EGFH是矩形;
(2)解:答案不唯一:
由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,
要证MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,
故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FQH.
故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证;
故答案为:FG平分∠CFE,GE=FH、∠GME=∠FQH,∠GEF=∠EFH.
![](http://thumb.zyjl.cn/images/loading.gif)