题目内容
【题目】宜昌四中男子篮球队在2016全区篮球比赛中蝉联冠军,让全校师生倍受鼓舞.在一次与第25中学的比赛中,运动员小涛在距篮下4米处跳起投篮,如图所示,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的表达式;
(2)运动员小涛的身高是1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,小涛跳离地面的高度是多少?
【答案】(1)y=﹣0.2x2+3.5;(2)球出手时,他跳离地面的高度为0.2m.
【解析】试题分析:(1)设抛物线的表达式为y=ax2+3.5,利用待定系数法,可得a的值;
(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.
试题解析:解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.
由图知图象过以下点:(1.5,3.05),∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.
(2)设球出手时,他跳离地面的高度为hm,
因为(1)中求得y=﹣0.2x2+3.5,
则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,
∴h+2.05=﹣0.2×(﹣2.5)2+3.5,
∴h=0.2(m).
答:球出手时,他跳离地面的高度为0.2m.
练习册系列答案
相关题目