题目内容

【题目】在正方形ABCD中,连接BD.

(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.

(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.

①依题意补全图1;

②用等式表示线段BM、DN和MN之间的数量关系,并证明.

(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)

【答案】(1)∠BAE的度数为45°;(2)①补全图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,理由见解析;(3)思路见解析.

【解析】(1)利用等腰直角三角形的性质即可;

(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;

(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.

解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,

∵AE⊥BD,∴∠ABE=∠BAE=45°,

(2)①依题意补全图形,如图1所示,

②BM、DN和MN之间的数量关系是BM2+MD2=MN2,

将△AND绕点D顺时针旋转90°,得到△AFB,

∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,

∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,

∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,

在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,

∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,

∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1

∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,

∵FB2+BM2=FM2,∴DN2+BM2=MN2

(3)如图2,

将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,

∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,

∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF

∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,

∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,

∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2

“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网