题目内容

如图,AB为⊙O的直径,CD与⊙O相切于点C,且ODBC,垂足为FOD交⊙O于点E

           

1)证明:BECE

(2)证明:∠D=∠AEC

(3)若⊙O的半径为5,BC=8,求△CDE的面积.


解:(1)∵BC是⊙O的弦,半径OEBC

    

BECE     

(2)连结OC

CD与⊙O相切于点C

∴∠OCD=90°     

∴∠OCB+∠DCF=90°

∵∠D+∠DCF=90°

∴∠OCB=∠D     

OBOC

∴∠OCB=∠B

∵∠B=∠AEC

∴∠D=∠AEC     


(3)在Rt△OCF中,OC=5,CF=4

     

∵∠COF=∠DOC,∠OFC=∠OCD

∴Rt△OCF∽Rt△ODC   

,即   …………9分

注:本小题也可利用Rt△OCD∽Rt△ACB等,以及SCDESOCDSOCE求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网