题目内容

【题目】如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是抛物线上两点,则y1<y2其中结论正确的是( )

A.①②
B.②③
C.②④
D.①③④

【答案】C
【解析】解:∵抛物线开口向下,

∴a<0,

∵抛物线的对称轴为直线x=﹣ =1,

∴b=﹣2a>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以①错误;

∵b=﹣2a,

∴2a+b=0,所以②正确;

∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点为(3,0),

∴当x=2时,y>0,

∴4a+2b+c>0,所以③错误;

∵点(﹣ )到对称轴的距离比点( )对称轴的距离远,

∴y1<y2,所以④正确.

所以答案是:C.

【考点精析】根据题目的已知条件,利用二次函数图象以及系数a、b、c的关系的相关知识可以得到问题的答案,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网