题目内容
【题目】一个盒子中装有四张完全相同的卡片,分别写着2cm,3cm,4cm和5cm,盒子外有两张卡片,分别写着3cm和5cm,现随机从盒中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是( )
A.
B.
C.
D.
【答案】D
【解析】解:共有四种等可能的结果数,它们为2、3、5,3、3、5,4、3、5,5、3、5,
其中这三条线段能构成三角形的结果数为3,
所以这三条线段能构成三角形的概率= .
所以答案是:D.
【考点精析】通过灵活运用三角形三边关系和概率公式,掌握三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n即可以解答此题.
练习册系列答案
相关题目
【题目】某鞋店销售了9双鞋,各种尺码的销售量如下:
鞋的尺码 | 20 | 21 | 22 | 23 |
销售量(双) | 1 | 2 | 4 | 2 |
(1)计算这9双鞋尺码的平均数、中位数和众数.
(2)哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?