题目内容
【题目】如图,平行四边形ABCD的对角线交于点O,以OD,CD为邻边作平行四边形DOEC,OE交BC于点F,连结BE.
(1)求证:F为BC中点.
(2)若OB⊥AC,OF=1,求平行四边形ABCD的周长.
【答案】(1)见解析;(2)平行四边形ABCD的周长为8.
【解析】
(1)先证明OB=OD,再证得EC//OD,EC=OD,进而得到OB//EC,OB=EC,说明四边形OBEC为平行四边形,最后根据平行四边形的性质即可证明;
(2)先证明四边形ABCD平行四边形,再证明平行四边形DOEC是矩形,求得BC,即可求得菱形ABCD的周长.
(1)证明:∵四边形ABCD是平行四边形,
∴OB=OD,
∵四边形DOEC为平行四边形,
∴OD∥EC,OD=EC,
∴EC∥OB,EC=OB,
∴四边形OBEC为平行四边形,
∴BF=CF,即F为BC中点;
(2)解:∵四边形ABCD是平行四边形,OB⊥AC,
∴四边形ABCD是菱形,
∵四边形OBEC为平行四边形,OB⊥AC,
∴四边形OBEC为矩形,
∴BC=OE=2OF,
∵OF=1,
∴BC=2,
∴平行四边形ABCD的周长=4BC=8.
练习册系列答案
相关题目