题目内容
【题目】如图,数轴上A、B两点对应的有理数分别为20和30,点P和点Q分别同时从点A和点O出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t秒.
(1)当t=2时,则P、Q两点对应的有理数分别是;PQ=;
(2)点C是数轴上点B左侧一点,其对应的数是x,且CB=2CA,求x的值;
(3)在点P和点Q出发的同时,点R以每秒8个单位长度的速度从点B出发,开始向左运动,遇到点Q后立即返回向右运动,遇到点P后立即返回向左运动,与点Q相遇后再立即返回,如此往返,直到P、Q两点相遇时,点R停止运动,求点R运动的路程一共是多少个单位长度?点R停止的位置所对应的数是多少?
【答案】
(1)24和8;16
(2)解:∵CB=2CA,
∴30﹣x=2(x﹣20)或30﹣x=2(20﹣x),
∴x= 或10
(3)解:设t秒后P、Q相遇.则有4t﹣2t=20,
∴t=10,
∴R运动的路程一共是8×10=80.此时P、Q、R在同一点,所以点R的位置所对应的数是40
【解析】解:(1)t=2时,OQ=2×4=8,PA=2×2=4,OP=24, ∴P、Q分别表示24和8,PQ=24﹣8=16,
所以答案是24和8,16.
【考点精析】本题主要考查了数轴和代数式求值的相关知识点,需要掌握数轴是规定了原点、正方向、单位长度的一条直线;求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入才能正确解答此题.
练习册系列答案
相关题目