题目内容
【题目】若一个函数的解析式等于另两个函数解析式的和,则这个函数称为另两个函数的“生成函数”。现有关于x的两个二次函数y1、y2,且y1=a(x-m)2+4(m>0),y1、y2的“生成函数”为:y=x2+4x+14;当x=m时,y2=15;二次函数y2的图象的顶点坐标为(2,k)。
(1)求m的值;
(2)求二次函数y1、y2的解析式。
【答案】(1)m=1;(2) y1=4x2-8x+8,y2=-3x2+12x+6.
【解析】
(1)根据已知新定义和当x= m时,y2= 15得出15= m2- a(m- m)2+4m + 10,求出即可;
(2)把m的值代入函数y2,根据顶点的横坐标即可求出a,再把a的值代入求出即可.
解:(1)由“生成函数”的概念,可知y=y1+y2.
∵y1=a(x-m)2+4,y=x2+4x+14,
∴y2=y-y1=x2+4x+14-a(x-m)2-4.
∵当x=m时,y2=15,∴15=m2+4m+10,得m1=-5,m2=1
又∵m>0,
∴m=1.
(2)由m=1得,y2=x2+4x+14-a(x-1)2-4
=(1-a)x2+(4+2a)x+10-a.
∵二次函数y2的图象的顶点坐标为(2,k),
∴对称轴x=-=2,解得a=4.
∴y1=4(x-1)2+4=4x2-8x+8,
∴y2=(1-4)x2+(4+2×4)x+10-4=-3x2+12x+6.
练习册系列答案
相关题目