题目内容
【题目】如图1,Rt△ABC中,∠A=90°,AB=AC,点D是BC边的中点连接AD,则易证AD=BD=CD,即AD=BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于BC.
理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,
即可证得AH=BC,此时AD=BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.
(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;
(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.
(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.
【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.
【解析】
(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.
(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD(SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.
(3)图5,图6中,上面的关系式仍然成立.
(1)证明:如图2中,
∵BD=DC,∠ADB=∠HDC,AD=HD,
∴△ADB≌△HDC(SAS),
∴∠B=∠HCD,AB=CH,
∴AB∥CH,
∴∠BAC+∠ACH=180°,
∵∠BAC=90°,
∴∠ACH=∠BAC=90°,
∵AC=CA,
∴△BAC≌△HCA(SAS),
∴AH=BC,
∴AD=DH=BD=DC,
∴AD=BC.
结论:直角三角形斜边上的中线等于斜边的一半.
(2)解:有这样分关系式.
理由:如图4中,延长ED到H山顶DH=DE.
∵ED=DH,∠EDB=∠HDC,DB=DC,
∴△EDB≌△HDC(SAS),
∴∠B=∠HCD,BE=CH,
∵∠B+∠ACB=90°,
∴∠ACB+∠HCD=90°,
∴∠FCH=90°,
∴FH2=CF2+CH2,
∵DF⊥EH,ED=DH,
∴EF=FH,
∴EF2=BE2+CF2.
(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.
证明方法类似(2).