题目内容
【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 .
【答案】1.2
【解析】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.
∵∠A=∠A,∠AMF=∠C=90°,
∴△AFM∽△ABC,
∴ = ,
∵CF=2,AC=6,BC=8,
∴AF=4,AB= =10,
∴ = ,
∴FM=3.2,
∵PF=CF=2,
∴PM=1.2
∴点P到边AB距离的最小值是1.2.
故答案为1.2.
如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到 = 求出FM即可解决问题.
练习册系列答案
相关题目
【题目】某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是( )
人 数 | 1 | 3 | 5 | 70 | 10 | 8 | 3 |
金额(元) | 200000 | 150000 | 80000 | 15000 | 10000 | 8000 | 5000 |
A.极差是195000
B.中位数是15000
C.众数是15000
D.平均数是15000